Nowhere Man

$$
\begin{aligned}
& 2 \times 1=2 \\
& 2 \times 2=4 \\
& 2 \times 3=6 \\
& 2 \times 4=8 \\
& 2 \times 5=10 \\
& 2 \times 6=12 \\
& 2 \times 7=14 \\
& 2 \times 8=16 \\
& 2 \times 9=18 \\
& 2 \times 10=20 \\
& 2 \times 11=22 \\
& 2 \times 12=24
\end{aligned}
$$

BEATLES

Math Songs
by Mr. Mark
nowhere man, please listen you don't know, what you're missing nowhere man, the world is at your command

$$
\begin{aligned}
& \quad \text { I Will } \\
& 3 \times 1=3 \\
& 3 \times 2=6 \\
& 3 \times 3=9 \\
& 3 \times 4=12 \\
& 3 \times 5=15 \\
& 3 \times 6=18 \\
& 3 \times 7=21 \\
& 3 \times 8=24 \\
& 3 \times 9=27 \\
& 3 \times 10=30 \\
& 3 \times 11=33 \\
& 3 \times 12=36
\end{aligned}
$$

MATH SONGS
by Mr. Mark
love them forever and forever love them with all your heart love them whenever, we're together love them when we're apart
Canh Buy Me Lave

$$
\begin{aligned}
& A \times 1=4 \\
& 4 \times 2=8 \\
& 4 \times 3=12 \\
& 4 \times 4=16 \\
& 4 \times 5=20 \\
& 4 \times 6=24 \\
& 4 \times 7=28 \\
& 4 \times 8=32 \\
& 4 \times 9=36 \\
& a n d 1 \\
& 4 \times 10=40
\end{aligned}
$$

Beajules

1 (1)nt कare to much for money cavse money कant huy me bue कant huy me lave बverybordy els me so ๘an? buy me bve, กo กo ก๐- กต!

Ob-la-di-ob-la-da
$5 \times 1=5$
$5 \times 2=10$
$5 \times 3=15$
$5 \times 4=20$
$5 \times 5=25$
$5 \times 6=30$
$5 \times 7=35$
$5 \times 8=40$
$5 x 9=45$
$5 \times 10=50$
$5 \times 11=55$
and then
$5 \times 12=60$

Math Songs
by Mr. Mark

$$
\begin{aligned}
& \text { Ob-la-di-ob-la-da life goes on- Yeah! } \\
& \text { La-di-da-di life goes on! }
\end{aligned}
$$

I've Just Seen a Face

$6 \times 1=6$
$6 \times 2=12$
$6 \times 3=18$
$6 \times 4=24$
$6 \times 5=30$
$6 \times 6=36$
$6 x 7=42$
$6 \times 8=48$
$6 \times 9=54$
and
$6 \times 10=60$

Math Songs
 \section*{BEATLES}
 \section*{BEATLES}
by Mr. Mark

li di di didi di di di

falling, yes I am falling, and they keep calling me back again
Nowegian Mood
$7 \times 1=7$
$7 \times 2=14$
$7 \times 3=21$
$7 \times 4=28$
$7 \times 5=35$
$7 \times 6=42$
$7 \times 7=49$
and then
$7 \times 8=56$
กext
$7 \times 9=63$
last
$7 \times 10=70$

Beafictes

Math Songs
by Mr. Mark

They asked me to stay and they Told me to sit anywhere sol Tooked around and I noticed there wasn a chair

8 Days A Week

$8 \times 1=8$
$8 x 2=16$
$8 x 3=24$
$8 \times 4=32$
$8 x 5=40$
$8 x 6=48$
$8 x 7=56$
$8 x 8=64$
$8 x 9=72$
and then
$8 \times 10=80$

MATH SONGS
by Mr. Mark

I ain't got nothing but evens, 8 days a week!

You've Got To...

Math Songs
by Mr. Mark

$$
\begin{aligned}
& 9 \times 1=9 \\
& 9 \times 2=18 \\
& 9 \times 3=27 \\
& 9 \times 4=36 \\
& 9 \times 5=45 \\
& 9 \times 6=54 \\
& 9 \times 7=63 \\
& 9 \times 8=72 \\
& 9 \times 9=81 \\
& 9 \times 10=90
\end{aligned}
$$

Hey, you've got to take your one away!

12 Octopus Gardens

$$
\begin{aligned}
& 12 \times 1=12 \\
& 12 \times 2=24 \\
& 12 \times 3=36 \\
& 12 \times 4=48 \\
& 12 \times 5=60 \\
& 12 \times 6=72 \\
& 12 \times 7=84 \\
& 12 \times 8=96 \\
& 12 \times 9=108 \\
& 12 \times 10=120
\end{aligned}
$$

She said, "When will we use this," and I said, "Measurement you know... is everywhere in life, everywhere we go,

```
PERIMETER...
a path surrounding shapes What is the distance around? add every length- of every side
```


CHORUS

AREA...
it's two-dimensional
How many squares will it fit?
length \mathbf{x} width
or base \mathbf{x} height

CHORUS

VOLUME...

it's three-dimensional
How many cubes will it fit?
length \mathbf{x} width and then \mathbf{x} the height

Area, Perimeter $\$$ Volume

$$
\begin{aligned}
& A=l \times \omega=6 \times 2: 12 \\
& \begin{array}{rlrl}
P=\frac{6+6}{6 \times 2+2+2}=16 u . & V \times 2 & =16 \text { u. } & =l \times \omega \times h \\
& =966 \times 4 \\
& & =96 \mathrm{cu} . u .
\end{array}
\end{aligned}
$$

all the different angles

AHHH... look at all the different angles! AHHH... measure all the different angles!

360 degrees are found going round the vertex, 3-6-0... the angle is whole If it's 180,180 exactly, the angle is straight.... flat as a pancake

All the different angles, where do they all come from? All the different angles, where do they all belong?

AHHH... look at all the different angles! AHHH... measure all the different angles!

Obtuse angle
Optn2e สแลิย

Straight angle

If less than 90 , the angle's acute, it's acute, but if it's just $90 \ldots$ it's a right angle If more than 90 , but if it less than 180 the angle's obtuse... an obtuse angle

All the different angles, where do they all come from?

Acute angle

AHHH... look at all the different angles! AHHH... measure all the different angles!

Right angle All the different angles, where do they all belong?

AHHH... look at all the different angles!

ACROSS THE PRIME
$2,3,5,7$, and $11,13,17,19,23,29,31$
$37,41,43,47 \ldots 53,59$, and 61
$67,71,73 \ldots 79,83,89,97$, are the primes of 100
nothing goes in a PRIME, except 1 and then that prime all the other numbers, are COMPOSITE numbers except for the NUMBER 1, which fits into every one

IN THE SKY

$$
1^{2}=1
$$

$$
2^{2}=4
$$

$$
3^{2}=9
$$

$$
4^{2}=16
$$

$$
10^{2}=100
$$

$$
5^{2}=25
$$

$$
11^{2}=121
$$

$$
6^{2}=36
$$

$$
12^{2}=144
$$

$$
7^{2}=49
$$

$$
8^{2}=64
$$

$$
\begin{aligned}
& 13^{2}=169 \\
& 14^{2}=196
\end{aligned}
$$

then

$$
9^{2}=81
$$

BEATLES

MATH SONGS by Mr. Mark

$$
\begin{aligned}
& 15^{2}=225 \\
& 16^{2}=256 \\
& \text { then } \\
& 17^{2}=289
\end{aligned}
$$

tell me that you've heard, Operation wordds, tell me you've learned - and you're trying...

TAKE AWAY, SUBTRACT... DIFFERENCE, LEFT OVER
HOW MANY MORE THAN, HOW MANY LEFT, DECREASE BY, REDUCE, REMAINS, REMOVE

I AM THE MATH MAN, THE MATHEMATICIAN, AND I CAN SOLVE THIS
PRO-PRO-PROBLEM, PRO-PRO-PROBLEM, PRO-PRO-PROBLEM, PRO-PRO-PROBLEM, PRO-PRO-PROBLEM
ADDITION, SUBTRACTION, MULTIPLICATION, EVEN DIVISION! GOO GOO G'JOOB!
when I'm reading MATH WORD PROBLEMS I look for the action

MULTIPLY, GROUPS OF, PER, BY, PRODUCT, OF, TWICE, TRIPLED, TIMES
tell me that you've heard, Operation wordd, tell me you've learned - and you're trying...

```
SPLIT, AVERAGE, DIVIDE... GOES INTO, SHARE EQUALLY
PERCENT, QUOTIENT, EVENLY, EVERY, RATIO, EACH, OUT OF, EQUAL PARTS
```


CHORUS

JUST LIKE THE MATH MAN, THE MATHEMATICIAN, YES I CAN SOLVE THIS! GOO GOO G'JOOB!

HEY DIDDLE DIDDLE Hey Diddle Diddle, the MEDIAN'S the middle; you add and divide for the MEAN.

The MODE is the one that appears the most, and the RANGE is the difference between.

MEDIAN 2, 2, 3, 4, 4@8, 8, 8, 10 , 11
MEAN $2+2+3+4+4+6+8+8+8+|0+| |=66(66 \div| |$ total numbers $=6)$ MODE $=8$
RANGE $=| |-2=9$

